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Numerical solutions are derived for a viscous, buoyant drop spreading below a free 
fluid surface. The drop has zero interfacial tension, and we consider viscosity contrasts 
0.1 < 1 < 10 with the surrounding fluid half-space. The density contrast between the 
drop and outer fluid is assumed to be small compared with the density contrast at the 
fluid surface. The numerical solutions for the approach and initial spread of the drop 
below the fluid surface are obtained using the boundary integral method. To facilitate 
an investigation over a larger range of viscosity contrasts and for longer time periods, 
we solve for the motion of gravity currents at the fluid surface. For this geometry we 
also solve the boundary integral equations for the cases 1 = 0 and 1/1 = 0. 

For extensive drop spreading, the motion is described by asymptotic solutions. 
Three asymptotic solutions are derived, which apply for different values of the viscosity 
contrast relative to the aspect ratio ((radial extent R)/(drop thickness a)). For very 
low-viscosity drops (Aaa/R[ln (R/u)]- ') ,  the greatest resistance to spreading occurs at 
the drop rim, and the asymptotic solution is found using slender body theory. Drops 
with intermediate viscosity contrast (a/RaAaR/a) are slowed primarily by shear 
stresses at the lower drop surface, and a lubrication solution (Lister & Kerr 1989) 
applies. The greatest resistance to the spread of very viscous drops (A+R/u) comes 
from the radial stresses within the drop, and the asymptotic solution is independent 
of the outer fluid. All drops having OaAaoo will eventually spread according to 
lubrication theory, when their aspect ratio becomes sufficiently large relative to 
viscosity contrast. 

Theoretical results are compared with numerical and experimental results for drops 
and gravity currents spreading at a fluid surface. The solutions can be applied 
to aspects of planetary mantle flow where temperature variations cause significant 
viscosity contrasts. The low-viscosity solution has been applied to study the encounter 
of a hot, low-viscosity upwelling plume with a planet surface (Koch 1994). Here we 
apply the high-viscosity asymptotic solution to study how cold downwelling slabs 
spread at a depth of neutral buoyancy in the Earth's mantle. 

1. Introduction 
This paper contains a study of the motion of a buoyant drop with arbitrary viscosity 

contrast as it approaches and spreads below the free surface of a fluid half-space. 
Large stresses in the fluid layer between the drop and the surface cause the drop to 
spread laterally just below the surface. We study the approach and initial spreading 
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Particle Surface Study 

solid interface* Lee & Leal (1982) 
solid interface*;# Geller, Lee & Leal (1986) 
drop* rigid Ascoli, Dandy & Leal (1990) 
drop#;* rigid Pozrikidis (1990b) 
drop* interface* Chi & Leal (1989) 
drop* interface*;rigid Yiantsios & Davis (1990) 
drop# interface# Manga et al. (1993) 

TABLE 1. Previous BIM studies of a drop interacting with a fluid surface or interface. # and * 
indicate zero and finite interfacial tension respectively. 

numerically using the boundary integral method. Asymptotic solutions are obtained 
for large spreading, which are independent of the initial conditions but depend on 
the relative values of the viscosity contrast and the aspect ratio of the drop. 

We use the boundary integral method (BIM), which allows for high resolution of 
the motion of thin films, since it permits reduction of the problem to a single one- 
dimensional integral equation for the motion of the drop surface. A general discussion 
and review of the boundary integral method as previously applied to problems with 
free surfaces is provided by Tanzosh, Manga & Stone (1992). Table 1 lists some 
studies of BIM solutions for a drop or sphere interacting with a surface or interface. 
In our study, the drop and fluid surface have zero interfacial and surface tension, 
as is appropriate for the large surfaces of interest in mantle flow applications. Our 
approach is similar to that of Manga, Stone & O’Connell (1993), except we assume 
that the upper fluid surface is impenetrable (normal flow is zero), instead of using a 
deformable upper surface as they do. This assumption is valid if the density contrast 
between the drop and outer fluid is very small relative to the contrast between the 
outer fluid and the air above, as is the case for the mantle applications considered here. 

One advantage of using the free-slip condition at the fluid surface is that we can 
formulate the problem using the method of images. The rising drop is mirrored 
by a sinking drop, thereby satisfying free-slip boundary conditions at the plane of 
symmetry between the drops (see figure 1). This method eliminates the need to solve 
for the motion of the upper fluid surface, so that the number of required integral 
equations is reduced from two to one. As a result we can allow the drops to spread 
to larger aspect ratios than could be obtained for a deformable surface. We are 
interested in looking carefully at the physics of drop spreading to see the effects of 
viscosity contrast, examine how instabilities might occur, and learn whether initial 
conditions affect long-term drop spreading. 

When the drop spreads far enough, the thin film between the drop and the interface 
may become gravitationally unstable. In addition to this physical instability, it may 
become difficult for the numerical simulation to describe the thin films. We will argue, 
however, that the dynamics of drop spreading is relatively insensitive to the thin film. 
Thus, we will also present numerical simulations of gravity currents adjacent to the 
interface as a means of determining the long-time spreading of the drops. 

Asymptotic solutions are derived which describe spreading when the drop or gravity 
current’s aspect ratio, or radial extent R divided by vertical thickness a, is very large. 
We will show that there are three different asymptotic spreading behaviours for drops 
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which have spread thin, depending on the relative values of the viscosity contrast 
A = qdrop/qhalfspace and the aspect ratio R/a. 

For intermediate values of A (a/ReA<.R/a), the radial component of velocity is 
nearly uniform across the drop thickness, the thickness tapers off gradually between 
the central region and the rim, and the flow in the outer fluid is driven primarily by 
tangential stress at the lower surface of the drop. This behaviour is described using 
lubrication theory, which approximates the drop motion as that of a thin, buoyant 
fluid layer with variable thickness (Lister & Kerr 1989). 

For very small A, the greatest resistance to spreading occurs at the rim, so that 
flow in the surrounding fluid is driven almost entirely by hydrostatic pressure directed 
radially outward at the rim. The drop has nearly constant thickness u(r),  since the 
fluid in the drop can flow easily in response to pressure gradients which result from 
variations in thickness thus eliminating these variations. The spreading behaviour 
is described by slender body theory, and the flow is driven to lowest order by an 
expanding ring of force at the rim of the drop. We will show that this solution 
applies for 1%-a/R[ln (R/u)]-*,  or for the time limit t4p/A5[ln (l/A)lP5[ln ( p / A 5 ) ] - ' ,  
where p = a5ql/ApgV2, Ap is the density contrast between the drop and outer fluid, 
V is the volume of the drop, and ql is the viscosity of the outer fluid. At larger times, 
a drop with non-zero 

For very high 1, the radial component of velocity in the drop is uniform across 
the drop thickness. But the viscosity of the drop is large enough that variations 
of the vertical velocity with depth and radial variations of the horizontal velocity 
contribute significantly to the stress in the drop and cannot be neglected as they are 
in lubrication theory. The equations derived in the asymptotic limit R%-.a for very 
high A are different from the standard thin film equations. We will show that this 
solution applies for A%-R/a, or for the time limit t+a2(ApgV/q2)-l, where qz is the 
viscosity in the drop. When these highly viscous drops spread beyond this limit, they 
will also make the transition to lubrication theory. 

The numerical and theoretical solutions have applications to certain features of 
planetary convection. The Earth's mantle convects vigorously (Rayleigh number is 
lo6-lo8), has infinite Prandtl number (kinematic viscosity/thermal diffusivity), and 
highly temperature-dependent viscosity. As a result, large temperature (and therefore 
viscosity) gradients occur across the upwelling and downwelling regions. Upwelling 
plume heads, or 500-1000 km diameter blobs of hot material which ascend from 
the boundary layer at the base of the mantle (see figure 12), have viscosities much 
smaller than the surrounding mantle. The cold downwelling convective limbs, or 
slabs, are highly viscous. Slabs tend to be tabular: about 100 km thickness and 
several thousands of kilometres in length. Since the viscosity contrasts are likely to be 
several orders of magnitude and occur abruptly across the plume and slab surfaces, 
they are difficult to resolve with large-scale numerical convective models. 

Our numerical and theoretical solutions have the advantage of considering large 
viscosity contrasts, and of resolving the behaviour of the upwelling and downwelling 
flows when they become very thin. The numerical solutions have been used to model 
the spread of plume heads beneath the surface of Venus (Koch 1994). In this study, 
the high-viscosity gravity current theory will be applied to the lateral spreading of 
slabs after they have sunk to a depth of neutral buoyancy in the mantle. It has 
been hypothesized (e.g. Machete1 & Weber 1991; Tackley et ul. 1993; Honda et al. 
1993) that slab material accumulates and spreads at a density discontinuity (at 670 
km depth), until a critical mass causes the material to flush into the lower mantle. 

will approach lubrication theory. 
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FIGURE 1. Model illustration of (a) the drop spreading beneath the fluid surface and (b )  the gravity 
current spreading at the surface. The drop and mirror drop (dashed) for the method of images are 
shown. 

We will consider how the high viscosity of the slab reduces the rate of spreading and 
causes the accumulation to occur more quickly. 

Our solutions also have applications to other two-phase flow problems, such as a 
miscible contaminant rising toward and spreading along a fluid-air interface. 

2. The numerical boundary integral solutions 
2.1. Solution technique 

Figure 1 illustrates (a)  the drop and (b)  the current geometries and parameters. The 
drop or current parameters are designated by subscript 2 and the outer fluid by 
subscript 1. We assume p1 - p 2 a p l  and that the fluid surface z = 0 is impenetrable 
(zero vertical velocity). Figure 1 shows the mirror formulation, in which the flow of 
the rising buoyant drop or current is superposed on that of a dense sinking mirror 
drop or current, in order to satisfy the free-slip boundary conditions at z = 0. 

The governing Stokes equations for flow within the drops and in the surrounding 
fluid are 

vp  = qv2u+ p g ;  v ‘ U  = 0, (2.1) 
where g is directed vertically downward in the lower fluid and upward in the mirror 
fluid. We non-dimensionalize lengths using the initial undeformed drop radius &,, 
velocities are non-dimensionalized by the drop velocity in an unbounded fluid U,, 
where 

(2.2) u - - -  lGgAp (;;;-) - 3 

“ - 3  rll 

A p  = p2 - P I ,  2 = ~ 2 1 ~ 1 ,  and pressure and stress are non-dimensionalized using 

We summarize the procedure for deriving the integral equation and refer to previous 
studies for further details (e.g. Lee & Leal 1982; Tanzosh et al. 1992). Integral 
equations for the velocity within the drops and the outer fluid, in terms of the velocity 
and stress along the fluid surfaces, are combined by making use of the condition 

u -+ 0 as 1x1 + 00 (2.3) 

r l 1  UmIRO. 
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and the boundary conditions on the drop interfaces: 

where Ten is the stress at the interface and (2.5) contains the (dimensionless) buoyancy 
driving force. The resulting integral equation for the motion at a point x on the drop 
interface is : 

+(A + l)u(x) = (A - 1) n K(x - Y )  U(Y)  dS + J(x - y )  f(y) dS b b 
where J and K are kernels for velocity and stress respectively: 

J=.(..!?-), K = - - -  3 rrr 
871 I ~ I  1 ~ 1 3  471 1 ~ 1 5 ’  

r = x - y ,  y is on the drop surface S for the lower drop and Sm for the mirror drop, 
n is the unit outward normal to the drop surface, and the stress difference f is given 
by (2.5). 

The solution procedure is slightly different for the 3, = 0 and l / A  = 0 gravity 
current solutions. For 3, = 0, there is no viscous stress and therefore no variation in 
reduced pressure within the drop. However there is still a non-zero pressure that is 
independent of position within the drop and is required to prevent volume changes. 
If we set 3, = 0 in the previous equations we would get zero stress inside the drop, so 
we modify the normal stress condition (2.5) to include an unknown pressure p 2 :  

f = (32 + p2)n. (2.8) 

p2 is determined by applying the constraint that drop volume remains constant: 

1 u . n d S  = O .  (2.9) 

For a gravity current with a very high viscosity contrast, we can take the limit 
3, + co of (2.4)-(2.7). However, since the motion is independent of the viscosity of 
the outer fluid, we must now non-dimensionalize all velocities using 

(2.10) 

Because of the axisymmetry of the drops and currents, analytic integration in 
the azimuthal direction yields elliptic functions (Lee & Leal 1982) and the surface 
integrals become one-dimensional integrals. The integrals over the drop and mirror 
drop are combined by making use of the mirror symmetry between the two drops. The 
line is discretized using arclength s, and cubic splines are used to express each node 
point ( r , z )  as (r(s) ,  z(s)). The integrals are performed using a five-point Gaussian 
quadrature scheme. When observation and integration points x and y coincide, the 
integrands in (2.6) possess an integrable singularity, which is calculated analytically 
for a small region close to the singularity. For A # 1, the velocity in the integrand is 
assumed to vary linearly between nodes and the solution requires a matrix inversion. 
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A Langrangian kinematic condition is used to update the drop shape, advancing time 
by a fixed increment At. Our code was developed from code written by Stone for two 
drops in a biaxial straining flow (see e.g. Stone & Leal 1989 for a related problem). 

Having obtained the solution for the velocity at the drop interface, the velocity 
within the fluid and at the surface of the fluid half-space can be calculated using the 
equation for the velocity at a point x in the surrounding fluid: 

U(X) = (A - 1) n . K ( x  - y )  .u(Y) dS + J(x  - y )  . f (y)  dS 1 1 
The right-hand side of (2.11) requires ~ ( y ) ,  the solution (2.6) for the velocity on the 
drop surface. 

The drops were started as spheres at dimensionless depths (depth/initial sphere 
radius) do = 5 or 2. The gravity currents were started as half-spheres (with half the 
volume of the drops) centred at r = 0, z = 0. Initially 50 nodes were evenly spaced 
along the arc length. As the drop or current spreads, additional nodes were added 
making a total of up to 100 nodes. A smaller node spacing was often employed 
near the rim in order to resolve the highly curved surface and the relatively high 
variation in the velocity which occurs there. Enough nodes were used to get a smooth 
well-defined velocity curve at the rim. The time increment At = 0.001 was used 
throughout the computations. 

To check code accuracy, we compared the initial motion of the spherical BIM drop 
with analytic results for an instantaneously deformable drop (Koch & Ribe 1989; 
Koch 1993). For an isoviscous drop, agreement between the BIM numerical and 
the analytical results is within 0.005% for the velocity (both on the drop and at the 
fluid surface) and within 0.002% for the pressure at the fluid surface. For A # 1 
we compared the initial BIM drop velocity with that of the series solution for an 
instantaneously deformable drop. For A = 10, there is 0.01% discrepancy, and the 
il = 0.1 drop agrees to 6 significant figures. 

In addition, we considered the long-term conservation of drop volume in order to 
check accuracy at later times. Volume loss is greatest for early spreading and for 
low-viscosity drops, since shape variations per unit time are greatest in these cases. 
For example, the greatest volume change per time unit was 6V = 0.005 ( VO = 471/3) 
for A = 0.1 at early times ( t  < 15). Volume change was not a significant problem for 
the early drop spreading and calculation of surface features required in the plume 
application (Koch 1994). However, in this study, we are interested in calculating long- 
time drop spreading rates and these are more sensitive to the accumulated changes 
in drop volume and shape. Thus, we readjusted the drop surface to keep the volume 
constant. Further details on code accuracy are desribed in Koch (1993). 

2.2. Numerical results 
2.2.1. Drop shape and velocity 

The drop shape and spreading behaviour varies with viscosity contrast. Figure 
2 shows the cross-sections of two drops having viscosity contrasts A = 0.1 and 10 
which were started as spheres at do = 2 and have spread to radial extent R = 2. The 
lower-viscosity drop curves away from the surface at the rim, with the film and the 
drop thinnest near the centre axis and with the bottom side concave downward. The 
concavity increases for larger initial drop depth do, since a deeper drop has more time 
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FIGURE 2. Cross-sections of two drops having radial extent R = 2: I = 0.1 (dashed line), and 

,I = 10 (solid line). The fluid surface is the solid line at z = 0. 
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FIGURE 3. Velocity within and around I = 1 drop at R = 2 (drop shown by solid line). 
The top row of arrows is the fluid surface z = 0. 

to deform as it approaches the surface (see figure 6 ) .  The high-viscosity drop is more 
rounded on the side away from the surface and has the thinnest film close to the rim. 
The film is thinner for the viscous drop, which spreads more slowly giving the film 
more time to drain. 

Figure 3 shows the velocity vectors within and outside an isoviscous drop which 
was started at do = 2 and has spread to R = 2. Figure 4 shows the velocity at the 
surfaces of low (4a: 1 = 0.1) and high (4b: 1 = 10) viscosity drops which have spread 
to radial extent R = 2. Both drops were started at do = 2. (The 1 = 10 drop arrows 
are scaled 3 times larger than for 1 = 0.1.) The inverse aspect ratio a/R, where a 
is the drop thickness at r = 0, is larger for 1 = 0.1 than for 1 = 10. The change in 
horizontal velocity across the drop thickness, or Au = u I , = ~ + ~  - uI,=h is much larger 
for the 1 = 0.1 drop since the resistance to internal shearing decreases with 1. The 
velocity across the low-viscosity drop becomes more uniform as the drop spreads 
further. 

Gravity current shapes are also affected by viscosity contrast. Figure 5 shows 
the shape of gravity currents which have spread to R = 3. The isoviscous current 
tapers off most gradually from the axis to the current edge, while the l/1 = 0 and 
1 = 0 currents tend to retain a more nearly constant thickness between the axis and 
rim. The low-viscosity drops and currents have a lip near the rim due to the large 
resistance of the fluid beyond the rim. 
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FIGURE 5. Gravity current shapes a(r)  at R = 3 for L = 0, 1 and l / I  = 0. 

The free surface has a significant effect on drop shape, as can be seen by comparing 
our shapes with those calculated by Pozrikidis (1990b) for drops approaching a rigid 
wall. The no-slip boundary condition at the solid surface creates a greater shear 
resistance in the film above the drop. The radial velocities on the top and bottom 
interfaces of a low-viscosity (A = 0.1) drop approaching a rigid surface are similar, 
whereas the velocity on the top interface of a drop approaching a free surface is 
much larger than that on the bottom where the greatest viscous resistance occurs. 
Consequently, although Pozrikidis’ soft drops curve away from the surface at early 
times, they do less than in the free surface case. At later times they look more like our 
larger-viscosity drops, curving toward the surface at the rim. The no-slip boundary 
condition makes the films near the solid boundary thicker than those near a free 
surface. For example, A = 0.1 drops started at do = 2 which have spread to R ;5: 1.8, 
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and do = 2 (solid line), after spreading to R = 1.3. 
Comparison of I = 0.1 drops started as spheres at do = 5 (dashed line) 

have a drop-to-film thickness ratio which is a / h  = 2 for a rigid surface and a /h  = 15 
for a free surface. 

One way to consider the effects of initial conditions on long-term spreading is to 
vary the initial depth do at which the drops are started as spheres. We compared drop 
motion and spreading for do = 2 and 5 and found that the effect is only significant 
for early spreading, and is greater for low-viscosity drops. Figure 6 shows two 1 = 0.1 
drops with R = 1.3 which were started at do = 5 (dashed line) and do = 2 (solid 
line). The dimpling behaviour, as seen on the lower surface of the do = 5 drop, was 
observed by Pozrikidis (1990b) for an isoviscous drop started at distance do = 8 from 
a solid wall. Any perturbation to a spherical drop shape (assuming zero interfacial 
tension) initiates a hydrodynamic instability in which a slightly oblate spheroid would 
eventually evolve into a toroid (Kojima, Hinch & Acrivos 1984; Koh & Leal 1989; 
Pozrikidis 1 9 9 0 ~ ) .  In our calculations an oblate shape is caused by interaction with 
the fluid surface, but the starting depths are not large enough to lead to significant 
deformation. In the mantle application, starting depths are about do = 6-12, which is 
also probably too small to form a toroidal shape. Dimples such as the one in figure 6 
are damped out by the subsequent spreading and the initial starting depth has little 
effect on the long-term spreading behaviour. Note that the upper interfaces of the 
drops in figure 6 are nearly identical. The surface deflection and velocity at the fluid 
surface z = 0 are not greatly effected by do. 

2.2.2. Drop and current spreading rates 
We use the numerical solutions to consider the way in which the radial extent and 

the drop and film thicknesses vary with time for different values of viscosity contrast. 
Figure 7 shows the (half) aspect ratio, R/a, as a function of time for both the drops 

(solid lines) and the gravity currents (dashed lines). Figure 8 shows the variation of 
radial extent R with time for the drops and currents, as well as for two theoretical 
solutions which will be derived in $3 .  Time is non-dimensionalized here and in the 
rest of the paper, unless stated otherwise, using 

t’ = t ROgAplr1, (2.12) 
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FIGURE 7. Log plot of aspect ratio R/(al,=o) versus t for drops (solid) and gravity currents (dashed). 
Drops started at do = 2 (upper curves for I = 0.1 and 10) approach the curves for do = 5. Time is 
increased by 3.0/U, for the shallower drops to adjust for the difference in starting depths. Time is 
non-dimensionalized using A p & g / q l .  

but we omit the prime. The vertical thickness, a, is measured at the centre axis r = 0. 
Starting depths of both do = 2 and 5 are shown for A = 0.1 and 10. For the shallower 
drops, we increased the time by 3.0/U, and these curves are slightly higher than 
the curves for the deeper drops but nearly overlap. This suggests that the effect of 
starting depth on long-term spreading is small. In addition, for each A, R(t) and a(t) 
of the drop approach those of the respective gravity current. The mismatch of the 
isoviscous drop and gravity current at large times is probably due to numerical errors 
such as long-term volume changes which are greatest for small A. 

Although a power law relation does not necessarily describe the spreading and 
thinning rates of the current, drop, and film, such a relation is convenient for 
studying long-term spreading behaviour. So we use the expression : 

r = bt", (2.13) 

where r is R, a, or h, b is a constant, and we calculate n = d(ln r )/d(ln t )  numerically. 
Table 2 shows the values of n for large times (given in the last column). (R(t)  for the 
A = 1000 and A = co currents are plotted in figure 11 and will be discussed below.) 

The constraint that the volume, V = aR2, remain constant leads to the prediction 
that the exponent for thinning should be twice the magnitude of the spreading rate 
exponent. The deviations from this (see table 2) are due to the fact that a is measured 
at Y = 0 and the drops have not yet attained asymptotic shapes. Thus the shapes are 
nearly, but not exactly, self-similar. 

Figure 9 shows that a / h  approaches a constant value. The values of a / h  for A = 0.1 
are larger than for A = 1 in figure 9 because the low-viscosity drop spreads and 
thins fastest. For large A, we can use a scaling argument to predict the variation of 
a / h  with viscosity contrast. The drop will rise as a nearly undeformed sphere until 
the normal stress in the lubrication gap between the sphere and free surface, which 
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FIGURE 8. Log plot of radial extent R versus t for drops (solid) and currents (dashed). Also shown 
by solid curves are the slender body solution (using (3.32), with c1 = 0.8) and the lubrication 
solution (Lister & Kerr 1989), discussed in $3. R is non-dimensionalized using initial drop radius 
&. Time is non-dimensionalized using A p & g / q l .  

i 
drops 

0.1 
1 

10 
currents 

0 
0.1 
1 

10 
100 

1000 
co 

R 

0.28 
0.22 
0.33 

0.22 
0.20 
0.21 
0.30 
0.38 
0.44 
0.46 

a 

-0.52 
-0.43 
-0.67 

-0.45 
-0.38 
-0.42 
-0.61 
-0.85 
-0.94 
-0.96 

blRI 

1.9 
2.0 
2.0 

2.0 
1.9 
2.0 
2.0 
2.2 
2.1 
2.1 

h t 

-0.49 94 
-0.47 900 
-0.67 650 

190 
300 
870 

1100 
4800 

100 000 
120* 

TABLE 2. Spreading and thinning exponents n for the relation r = bt", where r is R, a or h. Also 
shown are the times for which the values n are reported. Time is non-dimensionalized as in (2.12), 
* except for 1 = co which uses &gAp/q2 .  

scales as ql Ua/h2 (e.g. Yiantsios & Davis 1990), attains the value q z U / a  necessary to 
deform the drop. This gives the scaling 

a / h  = O(A'/2). (2.14) 

The values of a /h  attained by the deeper drops for A = 1, 5 and 10 are a / h  = 11.0, 
22.0, and 32.0 respectively. Therefore, the scaling relation seems to hold for A as small 
as 1, and the exact relation is a /h  = 10 All2.  

Figure 9 also shows that the initial drop depth affects the film thickness. The drops 
started at do = 2 have thinner films than the deeper drops with the same A. Deeper 
drops are more oblate when they get close to the surface and so are able to trap 
thicker films. 
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FIGURE 9. Ratio of drop to film thicknesses at r = 0 as a function of t .  Solid curves 
are for do = 5 and dashed curves for do = 2. 

Figure 9 and the values of n in table 2 indicate that the film thins at nearly the same 
rate as the drop. Scaling analysis suggests that the film and drop should thin at the 
same rate. The film motion due to the ascent of the drop scales as u = O(Apgha2/qlR) 
(Koch 1993). But this velocity is much less than the drop spreading velocity if 1 < R / a  
(e.g. equations (3.32) and (3.43)), so that the film thins passively above the spreading 
drop. 

Although the film thickness may become as small as the slight deflection of the 
free surface when h / a  is of the same order as A p / p ,  this is not likely to affect the 
thinning of the film. The reduced pressure driving the spreading of the drop and film 
is nearly the same for the deformable and non-deformable free surface as long as the 
deflection of the deformable surface is much smaller than R. 

The relatively dense film between the buoyant drop and the fluid surface is gravita- 
tionally unstable. At early times the lateral motion inhibits the growth of gravitational 
instabilities but, as the drop motion slows, an instability is likely to develop. Numer- 
ical instability may also result as the film gets very thin and becomes more difficult 
to resolve. 

The 1 = 0.1 drops broke through the film before the computer calculations were 
stopped. Instabilities began to develop when the drop spread to about R = 3, and 
when R = 3.4 a node near the rim (at r / R  = 0.929) approached and encountered the 
surface within one or two time units. Since we believe the instabilities are numerical 
we show results only up to R = 3 in figures 7-9. The 1 = 1 and 10 drops did not 
become unstable before the computations were stopped, even though the film became 
quite thin. High drop viscosity thus seems to have a stabilizing effect. 

We compare the numerical observations for small 1 with experimental observa- 
tions of drop stability. Griffiths & Campbell (1991) performed experiments for drops 
beneath a free surface, using glucose syrup and a K2C03 solution (1 = 0.003). 
Ring shaped instabilities developed in which the film eventually sank through the 
drop when the drop reached R PZ 2.2. The experimental values for n before the 
onset of instability ( n  = 0.22 k 0.02, -0.48 f 0.03, and -0.5, for R, a, and h, 
respectively) agree reasonably well with numerical ones for 1 = 0.1 before the nu- 
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merical instabilities developed. So the experimental and numerical low-viscosity 
drops have similar spreading behaviour until the development of respective insta- 
bilities. Then the experimental drops become unstable as the film sinks through 
the drop when R = 2.2, unlike the numerical drops which seem to break through 
the film to the surface at larger values of R. The differences in the nature of the 
instability may be due to the lower values of 1 used in the experiments, or to 
additional instabilities due to molecular effects, or to artificial numerical stability 
resulting from effects such as axisymmetry, node spacing, or the impenetrable fluid 
surface. 

Linearized Rayleigh-Taylor stability theory for a thin dense film overlying a much 
deeper layer indicates that the growth rate of the film instability is proportional to film 
thickness h, and, for a given value of h, the rate increases as A decreases (Canright 
1987; Whitehead & Luther 1975). This is consistent with the numerical results: 
the A = 0.1 drop, which also has the thickest film, breaks through the soonest. The 
theory predicts that the most unstable wavelength is approximately 5h-l0h, depending 
upon A. The wide node spacing used in the central portion of the subsurface drops 
was typically larger than these wavelengths and might therefore tend to inhibit the 
development of the instability. However, the 1 = 0.1 drop broke through in the 
central region which had the wider spacing, so it appears that the large node spacing 
does not preclude the development of the instability. 

3. Asymptotic theory for large drop spreading 
In $2  we solved numerically the full Stokes flow equations for a drop spreading 

below and a current spreading along a free fluid surface. These solutions can be 
obtained with reasonable accuracy up to an aspect ratio R/a of about 20 to 50, 
depending on the viscosity contrast. For R*a, the motion is described better using 
approximate methods. In this section we derive three different asymptotic solutions 
where each solution corresponds to a different value of the viscosity contrast 1 relative 
to the aspect ratio R / a .  

We derive the theories for gravity currents spreading at the fluid surface. For 
small 1, it appears that a buoyant drop spreading below a denser film eventually 
becomes gravitationally unstable and breaks through to the fluid surface where it 
would continue to spread as a gravity current. For 1 2 1, we argue based on both 
the scaling and numerical analyses that the film between a drop and a free fluid 
surface has little effect on the resistance to spreading and therefore the drop spreads 
like a gravity current. Figures 7 and 8 and the rate exponents given in table 2 
show that the drop and current spreading are nearly the same at long times. The 
scaling arguments are given in detail by Koch (1993) and are summarized here. For 
1aR2/ah ,  the horizontal velocity in the film is independent of depth and equal to 
the radial velocity at the upper surface of the drop. This is a consequence of the 
zero tangential stress condition at the surface z = 0. For ~ + ( R / u ) ~ ,  the stress in 
the film is negligible so that the film does not resist the motion of a very stiff drop. 
These two conditions overlap, since we observe that a > h in the numerical results. 
So, if the drop could continue spreading without becoming gravitationally unstable, 
the asymptotic theory for a drop below the surface would be the same as that for a 
gravity current. 

In $0 3.1-3.3 we present scaling analyses for the Stokes flow of gravity currents with 
R + a  for different values of A. We define a reduced pressure so that the term plg in 
the Stokes equations (2.1) is included in the vertical pressure gradient. The surface 
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of the fluid half-space again has zero tangential stress and vertical velocity. We also 
make use of a constant volume constraint for the current: 

V = 271 a(r)rdr. (3.1) LR 
In standard lubrication analysis, it is often assumed that the change in horizontal 

velocity (i i(r,z))  across the fluid film is much larger than the part of the horizontal 
velocity which does not vary with depth (U(r ) ) .  This assumption is not necessarily 
correct for spreading at a free surface. For example, we may compare the change in 
horizontal velocity which occurs across the drops in figure 4. Figure 4(a), the I I  = 0.1 
drop, shows a very large variation in horizontal velocity across the drop thickness, so 
that ii(r,z) > U(r) .  But the more-viscous 2 = 10 drop in figure 4(b) has U ( r )  > ii(r,z). 
In the scaling analysis we distinguish between these two components of the horizontal 
velocity, so that 

and evaluate the spreading behaviour based on the relative sizes of ii and U. 
u(r, z )  = U ( r )  + h(r, z ) ,  ( 3 4  

3.1. Low-viscosity drops: slender body theory 
For sufficiently small 2, we can assume that there are large variations of horizontal 
velocity with depth in the current and use the scaling 

6 2  u2 -*-, 
a2 R2 

so that the r-component of the equation of motion scales as 

a r p 2  = 0 ( r 2 $ )  9 

where the subscript 2 refers to the current. The scaling for continuity is then 

(3.3) 

(3-4) 

where (U2,G2) indicates the larger part of U2 and ii2. Combining (3.3)-(3.5) gives the 
result 

Using (3.6), the scaling for the z-component of the equation of motion is 

P2 
- a = 0 ( A p g ) .  (3.7) 

Substitution of (3.7) into (3.4) gives: 

where we have retained the r-derivative so that we can find a scaling for the way the 
thickness varies with r .  

We will say that a current has a ‘rim’ if its thickness near the edge a(re), where 
a+R - r,+R, is the same order of magnitude as the thickness near the axis a(r = 0). 
It will be shown that very low-viscosity drops form a rim and this rim drives much 
of the fluid motion. The velocity solution for Stokes flow close to a two-dimensional 
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source of motion, in this case the flow in the outer fluid near the edge of 
laterally spreading current which has a rim, has the scaling (Batchelor 1970) 

u, = ?In (t), 
Vl 

265 

a thin 

(3.9) 

where the subscript ‘0’ refers to the outer fluid (at r > R)  and or, is the normal 
stress at the drop rim. The scaling for the normal stress at the rim is given by the 
hydrostatic pressure as shown in (3.6) and (3.7). Combining this with (3.9), we get 

(3.10) 

The force exerted by the current rim on the outer fluid is found by integrating the 
stress over the area of the rim, which has the scaling 

F, = O(2naRor,) = 0 (2nApga2R).  (3.11) 

The scaling for the tangential stress matching condition on the lower surface of the 
current is 

a 2  
r2- a = 0 ($f) (3.12) 

where the subscript 8 refers to the fluid below the current, and R is the length scale 
appropriate for fluid flow variations there. Higher-order terms which would appear 
because the lower surface is not horizontal can be neglected. 

Using (3.12) and (3.Q the stress in the lower fluid has the scaling 

oe = 0 (pi) = 0 ql- = O(Apa8,a). ( 3 (3.13) 

The force exerted on the lower fluid is found by integrating the stress over the lower 
surface of the drop, which has the scaling 

Fe = 0(nApgR2aa,a). (3.14) 

Now we consider the drop shape in order to scale the change of a with r so that 
we can compare the forces on the rim (3.11) and lower surface (3.14). We define the 
change in drop thickness with r to be 

Aa = a(r = 0)  - a(re).  

Combining this with (3.8) gives the result 

(3.15) 

Matching a 2  within the drop where drop thickness a = O(a(r = 0)),  with u, evaluated 
at r = R using (3.10), we obtain 

(3.16) 

For sufficiently small A, we expect that any pressure gradients which result from 
variations in drop thickness will be eliminated by the relatively fast flow within the 
drop, so that Aa is very small or a(0) w a(r,) and (3.16) becomes 

(3.17) 
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This shows that A a ~ a  for A<a/R[ln(R/a)]-', which is the condition for constant 
drop thickness with r, or a 'disk-shaped' drop. 

Now we look at the balance between the forces at the rim and at the lower surface 
of the drop. For the disk-shaped drop, A a ~ a ,  we use (3.17), (3.14) and (3.11) to get 
the ratio of the force on the rim to that on the lower surface: 

(3.18) 

If AQa/R[ln (R/u)]-l, the force at the rim is larger than that on the lower surface. An 
asymptotic scaling could be derived for a/R[ln (R/u)]-'<,I<a/R in which a(r,) # a(0) 
but the rim still has a large effect on the spreading rate. However, we do not pursue 
this solution since it is applicable to such a restricted parameter regime. It is also 
possible that a current which has not reached a self-similar disk shape will still have 
a rim but with Au = O(a). Then the ratio of the force at the rim to that on the lower 
surface, using (3.11) and (3.14), is 

(3.19) 

but the spreading induced by the rim is still logarithmically greater than that induced 
by the lower surface. 

We can show that the pressure exerted by the lower fluid on the drop is negligible. 
The ratio of the pressure within the drop to that below, using (3.4), (3.12) and (3.13), 
is 

(3.20) 

We have shown that a drop with A~a/R[ln(R/a)]-' is disk shaped and has the 
largest force at the rim. Since the spreading motion is limited by the resistance of 
the fluid beyond the rim, the drop spreading velocity is given by (3.10). To solve 
for the dependence of R on time, we substitute the volume conservation (3.1) scaling 
(V = O(aR2)) into (3.10) to get 

The integration of (3.21) gives 

(3.21) 

(3.22) 

so that the relation between R and t is R - [tint]"'. The upper time limit for 
which slender body theory applies is found by combining I<a/R[ln(R/a)]-' and 
(3.22). For times larger than taP/A5[ln(l/,I)]-5[ln(P/A5)]-1, where P = u5ql/ApgV2,  
a low-viscosity current will begin to approach lubrication theory. 

Now we seek a quantitative solution for the spreading of the low-viscosity drop. 
Because the driving force is given approximately by a line distribution of forces (the 
buoyancy stress or pressure directed radially outward at the rim), an asymptotic 
solution will be found using slender body theory. Slender body theory is generally 
used to solve for the motion of a body with high aspect ratio moving in a viscous 
fluid, such that the fluid velocity outside the body is driven approximately by a line 
distribution of forces. For example, Batchelor (1970) used this theory to approximate 
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the motion caused by a rod translating in a viscous fluid, by solving for the appropriate 
line distribution of 'Stokeslets' that satisfies the boundary conditions on the rod. A 
Stokeslet is a singular solution of the Stokes flow equations representing the effect of 
a point force applied to a fluid. For our problem, we assume that the motion outside 
the drop can be obtained by integrating over a ring of radially directed normal force 
Stokeslets which drive the flow at the drop rim. This lowest-order outer solution is 
independent of the exact shape of the drop surface or the boundary conditions at the 
drop surface (Batchelor 1970). 

We define coordinates in the outer fluid so that 

ro = (70, 6 ' 7  z o )  = ( 7 / R  0, z/W, (3.23) 

where i is the radial component. The general form for the velocity at some point in 
the outer fluid is given by (2.11), where r = r,. Again we make use of the method 
of images. To simplify the presentation, we will consider only the radial velocity u at 
z = 0, although the derivation could be generalized to consider other positions and 
both velocity components. In the asymptotic limit, (2.11) can be simplified using the 
following. (i) The flow is driven primarily by the normal stress at the rim, which is 
given approximately by crrr = -p .  (ii) The first and third terms on the right-hand side 
of (2.11) can be neglected, since they have the scaling O(ua/R)  near the rim which is 
O(a /R)  smaller than the left-hand side. (iii) J has a relatively small variation with z .  
(iv) The integrals over S and S,,, are combined using u(a) = u(-a), orr(a) = orr(-a) 
and e,(a) = er(-a).  Applying (i)-(iv) to (2.11), the radial velocity at z = 0 is given 
by 

(3.24) 

where primes indicate integration variables. Using p = 0 at the bottom of the drop 
(z = a), as justified by (3.20), we integrate the pressure to get 

r a  r a  

Apg(z' - a) dz' = tApga2. 

Using (3.25), (3.24) can be written 

] d0'. 

This can be rewritten (see e.g. Davis, Schonberg & Rallison 1989) 

u(ro) - Apga2 1'" [ er  * er! I (err * r)(ev * r )  
87111 0 IrI 1 ~ 1 3  

(3.25) 

(3.26) 

(3.27) 
4x11 (7: + 1)1/2 S" (1 - cosede k2 cos 6')ll2 

Apga2 1 
u=- 

where k 2  = 2i0/(7,2 + 1). 
In order to evaluate the velocity at the drop surface, the outer coordinate is allowed 

to approach the drop surface, 7, --f 1, in (3.27). The integral is expressed in terms of 
elliptic integrals so that 

(3.28) 

where K and E are elliptic integrals of the first and second kind respectively. In the 
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limit of 7, + 1, k + 1, the elliptic integrals are singular and can be evaluated using 
series expansions (see e.g. Lee & Leal 1982), with the result 

1 4 4 
I = - [In ( ) - 2 + 0((1 - k2)ln(l - k2)) . 

21/2 (1 - k2)1/2 
(3.29) 

In order to take the limit, use the expansions: 

(3.30) 

where x is the 'inner' coordinate which is defined to be zero at the drop interface. 
Substituting (3.30), (3.29) and (3.28) into (3.27), we obtain the result 

1 2 2  7, = 1 + x ( a / R )  EZ 1 + XE, k2 = 1- ?x E ,  

1 Apga2 4(2)1/2R 

4 V i  
u = - [  a - 2 - l n x  (3.31) 

The lnx term is used to match to the inner solution. 
For leading-order matching, the inner solution will contain a lnx term, whose 

magnitude is determined by the net force per unit length exerted by the drop rim, and 
a constant velocity term which is approximately equal to dR/dt. These terms can be 
matched to the first and third terms on the right-hand side of (3.31). The result gives 
us the velocity solution 

---[In dR - Apga2 4(2)'/2R 
dt 47~~1 a 

(3.32) 

where c1 is a constant having O(1). To solve for the dependence of R on time, we set 
c1 = 0 in (3.32), use the volume relation a GZ V/(nR2), and integrate (3.32) to get 

R = [Bt ln( t /q)] ' /5 ,  (3.33) 

where B = 3ApgV2/(4q1n3) and q = ql/(Apg&)[V/(4(2)'/2nG)]5/3. To obtain the 
next higher-order correction to (3.32), which is only O( [In R/a]-') smaller, one would 
have to match (3.31) to an inner solution determined by solving for the flow and 
detailed interface shape near the rim. These higher-order terms are significant even 
for fairly large aspect ratio. 

We may use the numerical solution for A = 0 to solve for c1 in (3.32). Comparison of 
(3.32) with the derivative of the numerical solution indicates that c1 is approximately 
0.8. The slender body theory (SBT) theory solution plotted in figure 8 is found by 
using c1 = 0.8 and integrating (3.32) numerically. Table 2 indicates that the spreading 
rate exponent in (2.13) has the value n = 0.22 for A = 0. If instead of (2.13), we 
take the derivative dR/d(tlnt), the exponent is 0.19 and appears to be rising and 
converging to 1/5 at the end of the computation, consistent with (3.33). We will 
discuss the SBT solution further in the following section where we compare it with 
the lubrication solution. The il = 0.1 drops have a/R = 0.1 when R = 2 and therefore 
have il too large to qualify for the SBT asymptotic solution. 

3.2. Intermediate-viscosity drops: lubrication theory 
For larger il, the radial velocity in the drop has small variations across the current 
thickness, so that U2962. The spreading is resisted by shear stress from the fluid 
below the drop, which is evenly distributed along the droplower fluid interface. This 
causes the drop shape to taper gradually to zero with r ,  rather than having a blocky 
shape and a thick rim as for low A (compare current shapes in figure 5 for A = 0 
and 1). Equations (3.3)-(3.9) continue to apply, but for this case the drop spreading 
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velocity is determined by matching to the lower fluid, using the stress condition (3.12). 
The velocity boundary condition on the lower surface of the current is ut = O( Uz). 
Substituting this into (3.12) gives the tangential stress relation : 

U2 = O(G2IR/a), (3.34) 

so that the condition for U,s>G2 is Is>a/R.  

for the spreading velocity: 
Substituting (3.34) into (3.Q and using Aa = O(a)  and (3.1), we obtain the scaling 

Integrating this gives 

The full solution for 

and 

(3.35) 

(3.36) 

(3.36) may be found by solving the governing equations 

&P2 = Yl2&zu2, (3.37) 

&P2 = -4%. (3.38) 
This problem is the same as that addressed by Lister & Kerr (1989). They solved 

for the plug flow of a neutrally buoyant gravity current spreading at a flat interface 
between two viscous fluids. They noted that plug flow occurs provided that I is not 
too small, although they did not mention the upper limit ( I G R / a )  on the current 
viscosity for which the solution applies. A similarity solution was found for the 
current thickness a in terms of r and t. The relation between the radial extent and 
time is 

(3.39) 

The lubrication solution (3.39) is plotted in figure 8. The curves for the isoviscous 
drops and currents approach this solution. The I = 0.1 drops and currents also 
approach this solution near the end of the computations. The spreading rate exponents 
for I = 1 and 0.1 given in table 2 are close to the lubrication theory value of 1/5. 

In order to see more clearly the approach of the numerical solutions to the 
asymptotic solutions, figure 10 shows R/ t ' f5  for the slender body theory solution, the 
lubrication solution, and the I = 0 and 0.1 numerical gravity currents. Figure 10 uses 
both the analytic SBT solution (3.33) found from setting c1 = 0, and the solution 
to (3.32) if we assume that c1 = 0.8. After normalizing by t ' I5 ,  the I = 0 current 
seems to increase logarithmically, while the I = 0.1 one flattens and approaches the 
lubrication solution. 

During early stages of spreading, it is possible to have drops with I+a/R[ln (R/a) ] - '  
spread according to SBT, before reaching the asymptotic conditions for lubrication 
theory to apply. Initially the drops tend to have thick rims even though Aa is not 
small. The velocity resulting from force distributed along the rim of the drop is larger 
by a factor of In R / a  than the velocity resulting from an equal force distributed over 
the lower surface of the drop. This can be seen by comparing (3.10) and (3.35), the 
velocities which result from a stress of order Apga distributed over the drop rim and 
over the lower surface respectively. Slender body theory will apply to any drop which 
has larger motion driven by the rim than from the lower surface. This may be the 
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FIGURE 10. Log plot of R/t'15 versus t for the SBT solution with c1 = 0, 0.8 (solid curves), and 
for the lubrication solution (solid straight line). These are compared with R/t'I5 for the numerical 
gravity current solutions having 1 = 0 and 0.1 (dashed). 

reason that the 1 = 0.1 currents and drops retained a lip near the rim similar to that 
observed for 2 = 0 in figure 5. 

We may also compare the theoretical results with Griffiths & Campbells' (1991) 
experimental observations. Since they used fluids with 1 = lop3, the drops should 
spread according to slender body theory at large times. They measured the drop 
spreading and found the empirical relation 

R = (1.3 f 0.1)t0.22'0.02. 

The coefficient 1.3 f 0.1 agrees with our numerically derived coefficient for 1 = 0, 
which is b = 1.2. The exponent here is slightly larger than the t1I5 expected for 
lubrication, and might indeed be modelled better by the [t In t] 'I5 behaviour predicted 
by the slender body theory result. 

Lister & Kerr (1989) considered the spread of gravity currents at a fluid interface 
with 1 w 1 and also found that the spreading rate exponent exceeds the value of 
1/5 predicted by lubrication theory (their figure 6). In this case the viscosity contrast 
indicates that it should spread according to lubrication theory. They suggested that 
the faster spreading may be caused by gradients in surface tension at the free surface. 
It is also possible that these currents still have fat rims, as indicated by their photos 
(e.g. their figure 8), so that large resistance at the rim causes slender body theory 
spreading behaviour. 

3.3. Viscous drops: the 'stif solution 
For a very viscous current, we may have larger radial variations than vertical varia- 
tions, so that 

u2 2 2  
--B--. 
R2 a2 

(3.40) 

The value of 1 at which this applies is obtained from considering the tangential 
stress condition at the lower surface of the drop (3.12). Since U2 = O(ul)%&, (3.12) 
indicates that (3.40) holds for 19 R/a .  
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The r-component of the equation of motion then has the scaling 

(3.41) 

The z-component scaling (3.4) still applies, and we combine this with the scaling of 
continuity to get 

p2 = O(v/2wz/a) = O(Apga), (3.42) 
where the second equality in (3.42) is required to drive the motion. 

Combination of (3.41) and (3.42) yields 

(3.43) 

Using the scaling from volume conservation and integrating, we obtain the result 

(3.44) 

So for the case A+R/a, R N t'I2. From (3.44) we determine that for times greater 
than t Ga2(Apg V/q2)-', a viscous current will begin to approach lubrication theory. 

Again we wish to justify the assumption that there is negligible pressure on the 
current from the fluid below Using (3.41), (3.13), and U2 = ut, we obtain 

(3.45) 

so we can again assume that p 2  = 0 is the normal stress condition on the bottom of 
the current. 

The quantitative solution corresponding to (3.44) is obtained by solving 

a,p = -Apg + q2azZw. (3.46) 

and 

(3.47) 

We integrate (3.46), use the condition that the normal stress is zero on the lower 
surface of the drop z = a to determine the integration constant, and use continuity 
to obtain 

(3.48) 
1 
r 

p = -Apg(z - a) - 2q2-dd,(r~). 

Substituting (3.48) into the r-momentum equation (3.47) gives 

(3.49) 

Combining the kinematic condition w = Da/Dt with the integration of continuity 
with respect to z yields 

&a + a-&(ru) + udra = 0. (3.50) 

From the scaling we expect the radial extent to depend on time according to the 

r' = r/R, a' = aR2/V, u' = u/dR/dt. (3.51) 

1 
r 

scaling in (3.44). So we look for a similarity solution by defining 
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FIGURE 11. Log plot of R versus t comparing the stiff solution (solid) with the gravity current 
numerical results for 1 = 10, 100, 1000 (dashed) and cc (solid). R is non-dimensionalized using & 
and t using Apg&IqZ. 

Substituting (3.51) into (3.50), integrating, and using the condition that u' = 1 at 
r' = 1 gives (omitting primes) 

u = r.  (3.52) 

Substituting (3.51) into (3.49), and using (3.52) and the constant volume constraint 
(3.1), the drop thickness is found to be independent of the radial coordinate: 

1 
a =  -. 

.n 
(3.53) 

A final condition is that the integral of the normal stress over the vertical coordinate 
at the rim of the drop must be zero, because the inviscid outer fluid does not resist 
the spreading. Making use of (3.52), k can be determined: 

Therefore the solution relating R and t is 

R =  (= t ) ' j2 .  APg v (3.54) 

This solution is plotted in figure 11 along with the numerical solutions for currents 
having 1 = 10, 100, 1000 and 00. These last three solutions are nearly identical. These 
are plotted on a different graph from the lower-viscosity asymptotic solutions, because 
the stiff solution and the l / A  = 0 current solution depend on the current viscosity q 2 ,  
while the lubrication and SBT solutions depend on ql. Figure 11 indicates that the 
numerical solutions having very large 1 approach the stiff solution. 

The 1 = 10 current starts in the 'stiff' category, and reaches 1 = R / a  at about 
R = 2, at which point it approaches the lubrication solution. The very viscous 1 = 100, 
1000 and cc currents remain in the stiff current category for these calculations. The 
disk-like shape predicted by (3.53) is illustrated by the 1 = cc current in figure 5. 
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FIGURE 12. A cartoon showing a descending slab and ascending plume in the Earth’s 
material may spread laterally at the 670 km phase transition, and/or descend into the 
and spread along the core-mantle boundary. 
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4. Application to mantle ‘slab’ currents 
Solutions for the flow of highly viscous gravity currents can be applied to study the 

spreading behaviour of cold dense ocean plate material (or slabs) after it has sunk 
from the surface to a depth of neutral buoyancy in the mantle. Slabs coincide with 
the downwelling limbs of mantle convection, and have typical dimensions of about 
100 km thickness and thousands of kilometres in length (see figure 12). At 670 km 
depth in the mantle, there is an increase in mantle density due to an endothermic 
phase transition and possibly a chemical change. There is ongoing debate about 
whether slabs are neutrally buoyant at this depth and spread laterally, or whether the 
slabs are able to penetrate the density discontinuity and sink further to the boundary 
between the mantle and the underlying dense liquid core. Since the phase change 
at 670 km is endothermic, the cold slab causes the discontinuity to be deflected 
downward, and this deflection exerts a restoring force which resists slab penetration. 
But eventually enough dense slab material accumulates that this load overcomes the 
restoring force and the slab material cascades into the lower mantle. Among recent 
studies which investigate this problem are three-dimensional numerical convection 
models by Machete1 & Weber (1991), Tackley et al. (1993) and Honda et al. (1993). 
Although many two-dimensional convection models include temperature-dependent 
viscosity, these three-dimensional calculations do not. The slab-mantle viscosity 
contrast is not well known, and the range estimated by Griffiths & Turner (1988) 
is 40 < I < lo5. Very high values should inhibit spreading along the discontinuity 
and lead to much more rapid vertical accumulation than is indicated by isoviscous 
models. We use gravity current solutions for a highly viscous slab to study the effect 
of viscosity on slab spreading, whether it occurs at 670 km or along the core-mantle 
boundary. 
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Two previous studies have used asymptotic gravity current theories to consider 
slab spreading at 670 km. Bercovici, Schubert & Tackley (1993) applied the solutions 
derived by Huppert (1982) for a two-dimensional planar and an axisymmetric gravity 
current spreading above a rigid surface to study how slab material would spread at 
the 670 km discontinuity. They used an axisymmetric current to model the polygonal 
corners of downwelling convective cells (i.e. where slabs intersect), and the planar 
current to model the edges of the convective cells. They concluded that an axisym- 
metric current is likely to exert sufficient force to penetrate the phase transition at 670 
km, but the planar current would not. One problem with this study is the assumption 
that the mantle beneath the phase transition is viscous enough to be approximated 
by a rigid surface. It is possible that the mantle viscosity increases by as much as 
two orders of magnitude at this depth (e.g. Richards & Hager 1984), but the slab 
viscosity is likely to greatly exceed the viscosity of the lower mantle. In an earlier 
study, Kerr & Lister (1987) modelled slab spreading using asymptotic lubrication 
theory solutions for a gravity current at a fluid-fluid interface (Lister & Kerr 1989). 
As shown in $3,  the lubrication solutions are valid for an intermediate range of 
viscosity contrast between the current and the surrounding fluid layers ( a / R ~ l a R / a ) .  
However, slabs may be viscous enough to be better modelled using the stiff theory 
solutions, so we will compare the spreading predicted by stiff theory with that of 
lubrication theory. 

We consider a modified version of the stiff gravity current theory derived in $3 .  
Because of the tabular shape of the slabs, we assume a two-dimensional planar 
current. And since slab material is added at a nearly constant rate we use a constant 
flux of material at the centre axis of the current. 

The scaling of the governing equations is the same as for the stiff axisymmetric 
current, except that the volume constraint is now 

lL a(x)dx = Qt,  

where L is the current length, a is the thickness, x is the horizontal coordinate, and 
Q is the flux. 

The lubrication theory solution ( a / L 4 4 L / u )  for this problem derived by Lister 
& Kerr (1989) is 

L = 0.524 ( 1) ApgQ2 ''3 t .  

For the stiff case, A%L/a, following the procedure described in $3,  but using (4.1) 
instead of (3.1), we obtain the spreading relation 

We compare the rate of spreading for these two cases, using typical mantle param- 
eters. Using a slab subduction or sinking rate of 80 km My-' gives a flux of about 
Q = 3200 km2 My-'. Slabmantle density contrast and mantle viscosity are assumed 
to be Ap = 100 kg rnp3 and 111 = 2 x 10" Pa s respectively. Using these values and 
(4.2), lubrication theory predicts that the slab material would spread at a rate of 
about 

L km 

t MY 
- NN 30 -. (4.4) 
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This rate is slightly lower than the subduction rate, so that material would tend to 
accumulate. Using the same parameters in (4.3), and assuming a value of 1 = 1000, 
the stiff theory predicts a spreading rate of 

L km 
t My2 ' 
- w 0.016 t - (4.5) 

The stiff slab current has a rate which begins much smaller than the lubrication slab, 
but increases with time. Using these rates, lubrication theory and stiff theory predict 
that it would take about 300 and 750 million years respectively for slab material to 
spread 1/4 the circumference of the 670 km discontinuity. Eventually the ,I= lo00 slab 
would spread according to lubrication theory, but this would take about 2 billion years. 

But we might ask whether slab stiffness would enable immediate penetration of the 
discontinuity. Bercovici et al. (1993) considered the ratio of the downward force of 
accumulating slab material to the restoring force associated with the deflected phase 
boundary. This ratio is given by 

where p is the upper mantle density, Ap is the density increase at the discontinuity, 
a is thermal expansivity, and y is the Clapyron slope of the phase transition. We 
assume the same values they used ( p  = 4 x lo3 kg m-3, Ap = 0.1, y = 4 MPa K-', 
a = 3 x K-'), and get current thickness from (4.4) or (4.5) and conservation 
of volume scaling. Lubrication theory (4.4) (for a current at a fluid interface rather 
than at a solid surface as assumed by Bercovici et al. 1993) predicts that this ratio 
is about FR = 0.5 so that the slab load is not sufficient to permit penetration of the 
discontinuity. Stiff theory, ( 4 3 ,  gives a force balance of FR = 600t-' My. Therefore 
a stiff slab would immediately penetrate the discontinuity. 

Although our theory indicates that stiff slabs should immediately penetrate the 670 
km discontinuity, an important inhibiting effect not included in our study is trench 
migration. As slabs sink into the mantle, very often the point of slab descent (the 
trench) moves laterally along the surface. As shown, for example, by experiments of 
Kincaid & Olson (1987), this migration significantly inhibits slab penetration of a 
density discontinuity. In gravity current theory, trench migration would reduce slab 
material accumulation as the source of the flux would move laterally at the rate of 
trench migration. 

Assuming that slab material penetrates to the bottom of the mantle, the same 
theories apply for the spread of the slab material along the coremantle boundary. It 
is generally believed that upwelling mantle plumes originate from a boundary layer 
at the core-mantle boundary, and that the chemistry of these plumes reflects the 
evolution of the chemistry of the descending slab material (e.g. Campbell & Griffiths 
1992). Therefore a slab spreading according to lubrication theory would allow for 
relatively rapid assimilation of slab material into plume material, but stiff theory 
indicates that such assimilation would be considerably slower. 

5. Conclusions 
We have studied the way drops and gravity currents spread beneath a free surface, 

using the boundary integral method for initial spreading and asymptotic theories for 
very large spreading. A scaling analysis indicates that the spreading behaviour of 
gravity currents is described by three different relations, depending on the relative 
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Viscosity 14a/R[ln (R1a)I-l 
Resistance Rim 

a /R  41 4 Rla 1+R/a 
Lower surface Within current 

TABLE 3. Scaling analysis summary for the three types of spreading behaviour 

value of the viscosity contrast and the aspect ratio of the current. The results of 
the scaling analysis are summarized in table 3. The table shows where the greatest 
resistance to drop spreading occurs, the scaled dependence of radial extent R on time, 
and the theories described in $8 3.1-3.3. 

The fastest spreading occurs for very small viscosity contrast and is described by 
slender body theory. We derived the lowest-order solution, and higher-order terms 
should be obtained in future studies. The lubrication theory derived by Lister & Kerr 
(1989) applies for intermediate viscosity contrast. For very large viscosity contrast, 
we derived a stiff solution which predicts much slower spreading than applies for the 
lubrication theory or slender body theory solutions. 

We were able to verify these asymptotic solutions with numerical solutions for 
gravity currents. The solution for A = 0 approaches the slender body theory solution, 
and the l / A  = 0 solution approaches the stiff solution. At intermediate values, such as 
A = l,O.l and 10, the numerical results approach the lubrication solution. Experiments 
using drops with small A seem to spread faster than is indicated by lubrication theory, 
and this may be because they are better described by slender body theory. 

We applied a variation of the stiff solution to consider the way slabs spread at 
depths of neutral buoyancy in the Earth’s mantle. We conclude that if the slabs are 
viscous enough to be described by stiff theory, it is highly unlikely that the phase 
transition at 670 km would stop slabs from sinking deeper into the mantle. However 
if the trench, the point where slabs descend into the mantle, migrates laterally, slab 
penetration at 670 km may be inhibited. Otherwise it is likely that stiff slabs would 
sink to the bottom of the mantle and spread slowly along the core-mantle boundary. 
But if the slabmantle viscosity contrast is small enough to be described by lubrication 
theory, it is quite likely that slab material sinks to the 670 km phase transition and 
spreads laterally, never accumulating enough mass to sink further. 

We are grateful to Neil Ribe, Howard Stone, Edward Bolton, Ronald Smith, 
Michael Manga and three anonymous reviewers for helpful discussions and com- 
ments on the manuscript. We also thank Howard Stone for providing a copy of his 
boundary integral code, for numerical advice, and for showing us how to simplify the 
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EAR-89- 16241. 
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